HDF5 Advanced Topics
Selections

ODbject’s Properties
Storage Methods and Filters

HDF and HDF-EOS Workshop IX
November 30, 2005

Topics

Goal: Introduce HDF5 selections and object’s
properties

Hyperslab and Point Selection

HDF5 Dataset properties
|/O and Storage Properties (filters)

HDF5 File properties
I/O and Storage Properties (drivers)

What Is a Selection?

A portion of a dataset’s dataspace:

o Hyperslab: It can be a logically contiguous
collection of points in a dataspace, or it can be a
regular pattern of points or blocks in a dataspace.

e Individual Points: Selected points in the
dataspace

e Results of Set Operations on hyperslabs
or points (union, difference, ...)

Hyperslab Selection Satacet

/

Hyperslab

-+

Hyperslab

Union of
Hyperslabs

Reading Dataset into Memory from File

=11 Memory
2D array of 16-bit ints 3D array of 32-bit ints

Reqularl ..
J y The only restriction is that
spaced series T h f selected
of cubes e number of selecte

elements on the left be the

same as on the right.
HBE

Steps for Making Selections

Open the file

Open the dataset

Create a file dataspace for the dataset
Create a memory dataspace for the dataset
Make the selection(s)

Read from or write to the dataset

Close the dataset, file dataspace, memory dataspace,
and file

HBF

herr_t H5Sselect hyperslab (//d t space i1d, H5S seloper t op,
const hsize _t *offset, const hsize _t *stride,
const hsize_t *count, const hsize_t *block)

space _Id
op

offset

stride

count

block

IN:
IN:

IN:

IN:

IN:

IN:

Identifier of dataspace

Selection operator to use

H5S SELECT_ SET: replace existing selection
w/parameters from this call

Array with starting coordinates of hyperslab

Array specifying which positions along a

dimension to select

Array specifying how many blocks to select from

the dataspace, in each dimension

Array specifying size of element block (NULL

Indicates a block size of a single element In

a dimension)

HBF

herr_t H5Sselect _hyperslab (/d _t space 1d, H5S seloper t op,
const hsize _t *offset, const hsize t *stride,
const hsize_t *count, const hsize_t *block)

space _Iid
op

offset

stride

count

block

IN:
IN:

IN:

IN:

IN:

IN:

Identifier of dataspace

Selection operator to use

H5S SELECT SET: replace existing selection
w/parameters from this call

Array with starting coordinates of hyperslab

Array specifying which positions along a

dimension to select

Array specifying how many blocks to select from

the dataspace, in each dimension

Array specifying size of element block (NULL

Indicates a block size of a single element In

a dimension)

HBF

herr_t H5Sselect _hyperslab (/#/id _t space id, H5S seloper t op,
const hsize_t *offset, const hsize t *stride, const hsize _t *count,
const hsize_t *block)

space _Iid
op

offset
stride

count

block

10

IN:
IN:

IN:

IN:

IN:

IN:

Identifier of dataspace

Selection operator to use

H5S SELECT_ SET: replace existing selection
w/parameters from this call

Array with starting coordinates of hyperslab

Array specifying which positions along a

dimension to select

Array specifying how many blocks to select from

the dataspace, in each dimension

Array specifying size of element block (NULL

Indicates a block size of a single element In

a dimension)

HBF

herr_t H5Sselect hyperslab (/d t space i1d, H5S seloper t op,
const Nhsize _t *offset, const hsize t *stride,
const hsize_t *count, const hsize_t *block)

space /d IN: ldentifier of dataspace
op IN: Selection operator to use
H5S SELECT_ SET: replace existing selection
w/parameters from this call

offset IN: Array with starting coordinates of hyperslab

Stride IN: Array specifying which positions along a
dimension to select

count IN: Array specifying how many blocks to select from
the dataspace, in each dimension

block IN: Array specifying size of element block (NULL
Indicates a block size of a single element In
a dimension)

11 HPF

herr_t H5Sselect hyperslab (/id t space 1ad,
H5S _seloper t op, const hsize _t *offset, const hsize t *stride,
const Nsize_t *count, const hsize_t *block)

space _Iid
op

offset
stride

count

block

12

IN:
IN:

IN:

IN:

IN:

IN:

Identifier of dataspace

Selection operator to use

H5S SELECT_ SET: replace existing selection
w/parameters from this call

Array with starting coordinates of hyperslab

Array specifying which positions along a

dimension to select

Array specifying how many blocks to select from

the dataspace, in each dimension

Array specifying size of element block (NULL

Indicates a block size of a single element In

a dimension)

HBF

herr_t H5Sselect hyperslab (//d t space id, H55 seloper t op,
const hsize _t *offset, const hsize _t *stride,
const hsize_t *count, const hsize_t *block)

space _Iid
op

offset
stride

count

block

13

IN:
IN:

IN:

IN:

IN:

IN:

Identifier of dataspace

Selection operator to use

H5S SELECT_ SET: replace existing selection
w/parameters from this call

Array with starting coordinates of hyperslab

Array specifying which positions along a

dimension to select

Array specifying how many blocks to select from

the dataspace, in each dimension

Array specifying size of element block (NULL

Indicates a block size of a single element in

a dimension)

HBF

14

Hyperslab Example (1-D)

offset (0) = 1 block (0) =1 stride (0) =2
(or NULL)

Hyperslab Example
diml 10

XX L] X x| | .
BESSNERREYINN - 5o 15, 10}
x| x| e

Block size= {3, 2}
T

Stride= {4, 5}

dimO

What happens if you change Stride= {2, 5} ? (won’t work)

What happens if you change Count = {2, 2} ?
15 HIBPE

16

Hyperslab Example
10

-IIIIIIII- To select X's

BACERR o)
X set=

---------- Block size= {3 2}

Hyperslab Example
10

IIIIIIIIII To select X's
---------- Dataset size= {8, 10}
Cx D x -0
ock size=
1T T T T

What happens if you changed Block size= {1, 1} ?
17 HIBPE

18

Hyperslab Example
10

xR
---------- Dataset size= {8, 10}
HEEEEEEEEE offset= {0, 1}

Count= {2, 2}
Stride= {4, 5}

Example: Selection from Dataset-C | _

block[1]=1

block[O]=1 { | |

X=95

offset [O] ;
offset [1] = 2;
count [O] ;
count [1] = 4;
status = H5Sselect_hyperslab (dataspace,

H5S SELECT SET,offset,NULL, count, NULL);

19 HBF

ok~ wWDN P

20

Set Up Memory Dataspace

dimsm[0] = 3;
dimsm[1] = 4;
memspace = H5Screate_simple (2, dimsm, NULL);

21

Read/Write Using Selection

status = H5Dread (..., ..., memspace, dataspace, ..., ...);

number of elements selected in memory
space must be the same as the number of elements
selected in dataspace

herr_t H5Sselect _elements (//d_t space id, H5S seloper t op,
size_t num_elem, const hsize_t **coord’)

space /d IN: Ildentifier of the dataspace

op IN: Selection operator to use
H5S SELECT_ SET: replace existing selection
with parameters from this call

num_elem IN: Number of elements to be selected

coord IN: A 2-D array specifying the coordinates of the
elements being selected

23 HBF

herr_t H5Sselect _elements (A/d_t space id, H5S seloper t op,
size_t num_elem, const hsize_t **coord')

space /d IN: Identifier of the dataspace
op IN: Selection operator to use

H5S SELECT _ SET: replace existing selection
with parameters from this call

num_elem IN: Number of elements to be selected

coord IN: A 2-D array specifying the coordinates of the
elements being selected

24 HDF

herr_t H5Sselect_elements (A/d_t space ID, H5S seloper t op,
size_t num_elem, const hsize_t **coord')

space /d IN: Identifier of the dataspace

op IN: Selection operator to use
H5S SELECT_ SET: replace existing selection
with parameters from this call

num_elem IN: Number of elements to be selected

coord IN: A 2-D array specifying the coordinates of the
elements being selected

25 HBF

herr_t H5Sselect_elements (A/d_t spacEH5S seloper t op, size t
num_elem, const hsize_t **coord’)

space /d IN: Identifier of the dataspace

op IN: Selection operator to use
H5S SELECT_ SET: replace existing selection
with parameters from this call

num_elem IN: Number of elements to be selected

coord IN: A 2-D array specifying the coordinates of the
elements being selected

26 HBF

Example

>

Writes 53 and 59 to coordinates
(0,1) and (0,3) in first dataset.

27

Example: C Code

1 hsize t coord[2] [2];

Get the dataspace identifier from the file

2 si1d = H5Dget space (datasetl);

Set the selected point positions

3 coord[0] [0] = 0; coord[O0] [1] = 3;
4 coord[1l] [0] = 0; coordI[l] [1]

I
|_\

Select the elements in the file space

5 ret = H5Sselect elements (sid, H5S SELECT SET, 2,
(const hssize t **)coord) ;

28 HBF

29

Memory Dataspace

hsize t marray[] = {2};

mid1l = H5Screate_simple (1, marray, NULL); .

30

Read/Write Using Selection

status = H5Dread (..., ..., memspace, dataspace, ..., ...);

The number of elements selected in the
memory space must be the same number as
IS selected In the dataspace.

HDF5 Properties

g/l

32

Properties
Definition

e Mechanism to control different features of the
HDF5 objects
— There are default values for these features

— HDF5 H5P (Property List) interface allows users to
modify the default features
» At object creation time (creation properties)
» At object access time (access or transfer properties)

33

Properties
Definitions

e A property list is a list of name-value pairs

e A property list is passed as an optional parameters
to the HDF5 APIs

* Property lists are used/ignored by all the layers of
the library, as needed

34

Type of Properties
* Predefined and User defined property lists

e Predefined:

— File creation

— File access

— Dataset creation
— Dataset access

35

Properties (Example)
HDF5 File

e H5Fcreate(..,creation_prop 1id,..)

* Creation properties (how file Is created?)

— Library’s defaults
e no user’s block
 predefined sizes of offsets and addresses of the objects in the
file (64-bit for DEC Alpha, 32-bit on Windows)
— User’s settings
« User’s block
o 32-bit sizes on 64-bit platform
» Control over B-trees for chunking storage (split factor)

36

User’s Block

— User block stores user-defined information (e.g
ASCII text to describe a file) at the beginning
of the file

— h5jam — utility to add user block to HDF5 file

37

Properties (Example)
HDF5 File

e H5Fcreate(..,access_prop 1d)

o Access properties or drivers (How is file
accessed? What Is the physical layout on the
disk?)

— Library defaults
o STDIO Library (UNIX fwrite, fread)

— User’s defined

 MPI I/O for parallel access

o Family of files (100 Gb HDF5 represented by 50 2Gb UNIX
files)

» Sijze of the chunk cache

38

Properties (Example)
HDF5 Dataset

e H5Dcreate(..,creation _prop id)

» Creation properties (how dataset is created)

— Library’s defaults
 Storage: Contiguous
e Compression: None
o Space is allocated when data is first written
* No fill value is written

— User’s settings
» Storage: Compact, or chunked, or external
« Compression
 Fill value

» Control over space allocation in the file for raw data
— at creation time
— at write time

39

Properties (Example)
HDF5 Dataset

e H5Dwrite<read>(..,access _prop 1d)

» Access (transfer) properties

— Library defaults
» 1MB conversion buffer
» Error detection on read (if was set during write)
« MPI independent I/O for parallel access

— User defined
» MPI collective 1/O for parallel access

 Size of the datatype conversion buffer
» Control over partial 1/0 to improve performance

40

Properties
Programming model

Use predefined property type
— H5P_FILE_CREATE
— H5P_FILE_ACCESS
— H5P _DATASET_ CREATE
— H5P_DATASET_ ACCESS

Create new property instance

— H5Pcreate

— H5Pcopy

— H5Fget _access plist; H5Fget create plist
— H5Dget create plist

Modify property (see H5P APIs)
Use property to modify object feature

Close property when done
— H5Pclose

41

Properties
Programming model

» General model of usage: get plist,
set values, pass to library

hid_t plist = H5Pcreate(copy);

S5Pset foo(plist, vals);
5Xdo_something(Xid,
S5Pclose(plist);

., plist);

42

HDF5 Dataset Creation
Properties and Predefined
Filters

43

Dataset Creation Properties

Storage Layout

— Contiguous (default)
— Compact

— Chunked

— External

Filters applied to raw data
— Compression
— Checksum

Fill value
Space allocation for raw data in the file

44

Dataset Creation Properties
Storage Layouts

Storage layout Is important for 1/0O
performance and size of the HDF5
files

45

Storage Layout: Contiguous (default)

e Used when data will be written/read at
once

e Sub-sampling can be faster than chunked
e H5Dcreate(..,H5P DEFAULT)

46

Storage Layout: Compact

» Used for small datasets (order of O(bytes))
for better 1/0O

« Raw data Is written/read at the time when
dataset Is open

* File is less fragmented

HPF

Only two chunks will be
written/read

(@)
(=
—
e
(¢D)
(7p)
@)
>
(7p)]
| -
(¢D)
=
)
(¢B)
al

access time;
extendible

Storage Layout: Chunked
— Compression and other filters

— Extendible datasets

* Chunked layout Is needed for

47

48

Storage Layout: External

Dataset’s raw data Is stored in an external file
Easy to include existing data into HDF5 file
Easy to export raw data If application needs it

Disadvantage: user has to keep track of additional files
to preserve integrity of the HDF5 file

Raw data can be
stored in external file

Dataset “A”

DFS file

REwdataHor AT

Metadata for “A”

HPF

Setting Storage Layout

hid_t p/ist = H5Pcreate (HSP_DATASET CREATE);

Compact: H5Pset layout (plist, HSD_COMPACT)
Chunked: H5Pset chunk (plist, rank, ch_dims);
External: H5Pset external (plist, “raw_data.ext”, offset, size);

dset_id = H5Dcreate (..., ... ,..., plist);
H5Pclose (plisi);

49

50

HDF5 Dataset Creation Filters

Filters are a mechanism to manipulate data

while transferring It between memory and
disk.

Chunks of a dataset can be arranged Iin a

pipeline so that output of one filter becomes
Input of the next filter.

Dataset Creation Properties
Compression and other Pipeline Filters

 HDF5 predefined filters (H5P interface)

— Compression (gzip, szip)
— Shuffling and checksum filters

o User defined filters (H5Z and H5P interfaces)

— Example: Bzip2 compression
http://hdf.ncsa.uiuc.edu/HDF5/papers/papers/bzip2/

ol

http://hdf.ncsa.uiuc.edu/HDF5/papers/papers/bzip2/

52

Compression and other Pipeline Filters
(continued)

Currently used only with chunked datasets

Filters can be combined together
— Shuffle + checksum filter + GZIP
— Checksum filter + user define encryption filter

Filters are called In the order they are defined on
writing and in the reverse order on reading

The order Is important!

User is responsible for “filter pipeline sanity”
— GZIP + SZIP + shuffle doesn’t make sense
— Shuffle + SZIP does

53

Creating compressed Dataset

e Compression
— Improves transmission speed
— Improves storage efficiency
— Requires chunking
— May increase CPU time needed for compression

Checksum Filter

 HDF5 includes the Fletcher32 checksum algorithm

for error detection.
|t iIs automatically included in HDF5

e To use this filter you must add it to the filter pipeline
with H5Pset_filter.

54 Checksum value HBE

55

Shuffling filter

e Predefined HDF5 filter

* Not a compression; change of byte order in a
stream of data

00 000001 00000017 0OO0O0O0O00:2B

v

00 00 0000 0000000000 0L 17 2B

Effect of data shuffling
(H5Pset_shuffle + H5Pset_deflate)

o Write 4-byte integer dataset 256x256x1024 (256MB)
e Using chunks of 256x16x1024 (16MB)
e Values: random integers between 0 and 255

No Shuffle |102.9MB |671.049 629.45
Shuffle 6/.34MB | 83.353 78.268

Compression combined with shuffling provides
*Better compression ratio
of *Better 1/O performance HEF

Enabling Filters

hid_t p/ist = H5Pcreate (H5P_DATASET CREATE);
H5Pset chunk (pl/ist, ndims, chkdims);

GZIP Compression: H5Pset_deflate (plist, level);

SZIP Compression. HS5Pset_szip (plist, options-mask, numpixels);
Checksum Filter: H5Pset_filter (plist, H5Z_ FILTER_FLETCHER32,
0, 0, NULL);

Shuffle Filter w/GZIP: H5Pset_shuffle(plis?);
H5Pset deflate(p/ist, level);

dset_id = H5Dcreate (..., ... ,..., plist);
H5Pclose (plisi);

58 HIBPE

User-defined Filters

g/l

60

Standard Interface for User-defined Filters

H5Zregister : Register filter so that HDF5
knows about It
o H5Zunregister: Unregister a filter
o H5Pset filter: Adds a filter to the filter pipeline
o H5Pget filter: Returns information about a filter
In the pipeline
H5Zfilter _avail: Check If filter is available

HDF5 Dataset Access (Transfer)
Properties

g/l

62

Dataset Access/ Transfer Properties

e Improve performance

e H5Pset buffer

— Sets the size of the datatype conversion buffer
during 1/O (default is 1MB)

e Other functions

File Creation Properties

hid_t H5Fcreate (const char *name, unsigned flags,
hid_t create id, hid_t access_id)

name IN: Name of the file to access

flags IN: File access flags

create_id IN: File creation property list identifier
access id IN: File access property list identifier

65

File Creation Properties

o H5Pset userblock

— User block stores user-defined information (e.g ASCI|I
text to describe a file) at the beginning of the file

— Sets the size of the user block
— 512 bytes, 1024 bytes, ... (2N for N>7).

o H5Pset sizes

— Sets the byte size of the offsets and lengths used to
address objects in the file

e QOthers

File Access Properties

67

File Access Properties (Performance)

« H5Pset cache (this function is changing in 5-1.8)
— Sets raw data chunk parameters
— Improper size will degrade performance

 H5Pset meta block size
— Reduces the number of small objects in the file

— Block of metadata is written in a single 1/O operation
(default 2K)

— VFL driver has to set
H5FD _AGGREGATE _METADATA

o H5Pset sieve buffer
— Improves partial 1/0

68

File Access Properties (Physical storage
and Usage of Low-level 1/O Libraries)

VFL layer file drivers:

» Define physical storage of the HDF5 file
— Memory driver (HDF5 file in the application’s memory)
— Stream driver (HDF5 file written to a socket)
— Split(multi) files driver
— Family driver
o Define low level I/O library

— MPI I/O driver for parallel access
— STDIO vs. SEC2

Files needn’t be files - Virtual File Layer
VFEL: A public API for writing 1/O drivers

“Ejle” Hand've\

VVEL: Virtual File 1/O Layer 1/0 drivers
split
CID
X / | 1

“Storage” :

v
A\ 4

Memory Network

HPF

Split Files

o Allows you to split metadata and data into separate files
e May reside on different file systems for better 1/0
« Disadvantage: User has to keep track of the files

HDFS5 file

Metadata file Raw data file

70

71

File Families

» Allows you to access files larger than 2GB on
file systems that don't support large files

o Any HDFS5 file can be split into a family of files
and vice versa

« A family member size must be a power of two

Modifying File Access Properties

hid_t p/ist = H5Pcreate (HSP_FILE_ACCESS);

Split Files: H5Pset_fapl_split (p/ist, “.met”, HSP_DEFAULT,
“.dat”, HSP_DEFAULT);
File Family: H5Pset_fapl family (pl/ist, family_size,
H5P_DEFAULT);

file_id = H5Fcreate (..., ... ,..., plist);
H5Pclose (plisi);

72

73

HDF Information

e HDF Information Center
— http://hdf.ncsa.uiuc.edu/

« HDF Help email address
— hdfhelp@ncsa.uiuc.edu

e HDF users mailing list
— hdfnews@ncsa.uiuc.edu

4

Thank you

This presentation Is based upon work supported In part
by a Cooperative Agreement with the National
Aeronautics and Space Administration (NASA) under
NASA grant NNGO5GC60A. Any opinions, findings,
and conclusions or recommendations expressed In this
material are those of the author(s) and do not necessarily
reflect the views of NASA. Other support provided by
NCSA and other sponsors and agencies

(http://hdf.ncsa.uiuc.edu/acknowledge.html).

	HDF5 Advanced TopicsSelectionsObject’s PropertiesStorage Methods and Filters
	Topics
	Working with Selections
	What is a Selection?
	Hyperslab Selection
	Reading Dataset into Memory from File
	Steps for Making Selections
	herr_t H5Sselect_hyperslab (hid_t space_id, H5S_seloper_t op, const hsize_t *offset, const hsize_t *stride, const hsiz
	herr_t H5Sselect_hyperslab (hid_t space_id, H5S_seloper_t op, const hsize_t *offset, const hsize_t *stride, const hsi
	herr_t H5Sselect_hyperslab (hid_t space_id, H5S_seloper_t op, const hsize_t *offset, const hsize_t *stride, c
	herr_t H5Sselect_hyperslab (hid_t space_id, H5S_seloper_t op, const hsize_t *offset, const hsize_t *stri
	herr_t H5Sselect_hyperslab (hid_t space_id, H5S_seloper_t op, const hsize_t *offset, const hsize_t *stride,
	herr_t H5Sselect_hyperslab (hid_t space_id, H5S_seloper_t op, const hsize_t *offset, const hsize_t *stride, const hsiz
	Hyperslab Example (1-D)
	Hyperslab Example
	Hyperslab Example
	Hyperslab Example
	Hyperslab Example
	Example: Selection from Dataset - C
	Set Up Memory Dataspace
	Read/Write Using Selection
	Individual Points Selection
	herr_t H5Sselect_elements (hid_t space_id, H5S_seloper_t op, size_t num_elem, const hsize_t **coor
	herr_t H5Sselect_elements (hid_t space_id, H5S_seloper_t op, size_t num_elem, const hsize_t **coord)
	herr_t H5Sselect_elements (hid_t space_ID, H5S_seloper_t op, size_t num_elem, const hsize_t **coo
	herr_t H5Sselect_elements (hid_t spacEH5S_seloper_t op, size_t num_elem, const hsize_t **coord)
	Example
	Example: C Code
	Memory Dataspace
	Read/Write Using Selection
	HDF5 Properties
	PropertiesDefinition
	PropertiesDefinitions
	Type of Properties
	Properties (Example)HDF5 File
	User’s Block
	Properties (Example)HDF5 File
	Properties (Example)HDF5 Dataset
	Properties (Example)HDF5 Dataset
	Properties Programming model
	PropertiesProgramming model
	HDF5 Dataset Creation Properties and Predefined Filters
	Dataset Creation Properties
	Dataset Creation Properties Storage Layouts
	Storage Layout: Contiguous (default)
	Storage Layout: Compact
	Storage Layout: Chunked
	Storage Layout: External
	Setting Storage Layout
	HDF5 Dataset Creation Filters
	Dataset Creation Properties Compression and other Pipeline Filters
	Compression and other Pipeline Filters(continued)
	Creating compressed Dataset
	Checksum Filter
	Shuffling filter
	Effect of data shuffling (H5Pset_shuffle + H5Pset_deflate)
	Enabling Filters
	User-defined Filters
	Standard Interface for User-defined Filters
	HDF5 Dataset Access (Transfer) Properties
	Dataset Access/Transfer Properties
	File Creation Properties
	File Creation Properties
	File Access Properties
	File Access Properties (Performance)
	File Access Properties (Physical storage and Usage of Low-level I/O Libraries)
	Files needn’t be files - Virtual File Layer
	Split Files
	File Families
	Modifying File Access Properties
	HDF Information
	Thank you

