
The Metadata Cache in HDF5
Changes in the HDF5 metadata cache since 1.6.3

-1-

The metadata cache is deep in the bowels of HDF5.

Those who use HDF for relatively simple files don't

need to care.

However, for complex files, the metadata cache has

a major impact of performance. Understanding

the metadata cache does will help the user tune it

to his application.

This talk addresses only the metadata cache, not the

chunk cache. Maybe next year.

A detailed overview of the metadata cache changes in HDF5 will be

included the HDF5 1.8 Users Guide, and the new API calls will be

documented in the HDF5 1.8 Reference Manual. Draft versions of

both of these documents are available on line.

For a draft version of the overview, follow: http://hdf.ncsa.uiuc.edu/

HDF5/doc_dev_snapshot/H5_dev/UG/UG_frame17SpecialTopics.html

and then follow the link to Metadata Caching.

A draft version of the Reference Manual is at http://hdf.ncsa.uiuc.edu/

HDF5/doc_dev_snapshot/H5_dev/RM/RM_H5Front.html

Look there for the entries on the new H5F and H5P API calls mentioned

in the overview.

After the 1.8 release, be sure use the 1.8 User's Guide and Reference

Manual instead of the above links.

References

-2-

Everything in this presentation has been greatly

simplified.

If you want to work with the metadata cache related

APIs, please read the references.

Metadata – extra information about your data

- Two kinds:

- Structural metadata

- Stores information about your data

- Example: When you create a group, you really create:

- Group header,

- B-Tree (to index entries), and

- Local heap (to store entry names)

- User defined metadata (Created via the H5A calls)

- Usually small – less than 1 KB

- Accessed frequently

- Small disk accesses still expensive

Definitions

-3-

First of several slides of definitions.

Most are probably already familiar with them, but

need to get everyone on the same page

Metadata:

Conceptually, everything in your HDF5 file other

than your data.

More specifically, it is all the entries in HDF5 files

that tell the library where your data set is, what its

name is, what type of data it contains, its

dimensions, etc.

Cache:

– An area of storage devoted to the high speed retrieval of frequently

 used data.

Metadata Cache:

– In HDF5, a module that tries to keep frequently used metadata in

 core so as to avoid file I/O.

– Exists to enhance performance.

– Limited size – in general, can't hold all the metadata all the time.

Cache Hit:

–A metadata access request that is satisfied from cache.

– Saves a file access.

Cache Miss:

– A metadata access request that can't be satisfied from cache.

– Costs a file access (several milliseconds in the worst case).

Definitions (continued)

-4-

Metadata Cache:

Effect on performance is hard to overstate, as all the

small disk accesses for metadata will clobber us

otherwise.

For caches, one measure of performance is hit rate

(cache hits / (cache hits + cache misses)).

This is a good measure as long as the overhead of

the cache is small.

Dirty Metadata:

– Metadata that has been altered in cache but not written to file.

Eviction:

– The removal of a piece of metadata from the cache.

Eviction Policy:

– Procedure for selecting metadata to evict.

Principle of Locality:

– File access tends not to be random.

– Metadata just accessed is likely to be accessed again soon.

– This is the reason why caching is practical.

Working set:

– Subset of the metadata that is in frequent use at a given point in time.

– Size highly variable depending on file structure and access pattern.

Definitions (continued)

-5-

Evictions are necessary to make space in the cache

on a cache miss.

Ideally, the eviction policy picks the entry least

likely to be accessed soon. This ideal is seldom met.

The working set size is a key concept – bang on it.

My definition of a working set is a bit nebulous, as

I don't say how frequently an entry has to be

accessed to be included in the working set.

Fortunately, it doesn't matter, as the definition really

depends on what is an acceptable hit rate.

Example (Don't do this at home kids!)

Working # of Cache

If we: set size is: accesses is:

1) Create four datasets A, B, C, and D < 1 MB < 50 K

 with 1,000,000 chunks each in the root

 group of an empty file.

2) Sequentially initialize the chunks using < 1 MB ~30 M

 a round robin (1 from A, 1 from B, 1from

 C, 1 from D, and then repeat until done).

3) 1,000,000 random accesses across A, ~120 MB ~4 M

 B, C, and D.

4) 1,000,000 random accesses to A only. ~40 MB ~4 M

-6-

The big point here is how working set size changes

with access pattern.

The actual amount of metadata in the file is fixed

 after step 1). What changes is the access pattern.

Challenges peculiar to metadata caching in HDF5

1) Wildly varying metadata entry sizes.

– Most entries are less than a few hundred bytes.

– Possible to create pieces of metadata of almost any size.

– Entry sizes from bytes to megabytes exist in the wild.

2) Wildly varying working set sizes.

– Less than 1 MB for most applications most of the time.

– ~ 8MB for at least one in the wild.

3) Metadata cache competes with application programs for core.

– Cache must be big enough to hold working set – otherwise hit

 rate and performance is poor.

– Should never be significantly bigger lest it starve the user

 program for core.

-7-

The Metadata Cache in HDF5 1.6.3 and before
Hash

Table

Metadata

Metadata

Metadata

Metadata

Metadata

No provision for collisions.

If a new entry hashes to the same location as an

existing entry, the existing entry is evicted.

No other mechanism for eviction.

If the hash table is small:

– Poor performance as frequently accessed

 entries likely to hash to the same location,

 constantly evicting each other.

– Good cache size control, as entries don't

 sit in the cache long before being evicted.

-8-

Caches must be able to look up entries quickly.

Hash tables are quick, and are therefore popular for

this application.

But hash tables are subject to collisions when two

entries hash to the same location in the hash table.

The old metadata cache dealt with this problem by

evicting the old entry. This is quick, but if the hash

table is small, evictions for active entries are likely.

If the hash table is large, entries accumulate.

The Metadata Cache in HDF5 1.6.3 and before (Continued)

If the hash table is big:

– Good performance, as frequently accessed entries unlikely to hash to

 the same location.

– Cache grows very big as entries are seldom evicted.

– 100 times working set size observed in the wild.

Due to performance issues, must use large hash table.

This version of the cache is:

– Fast.

– Economical in its use of computational resources.

– Adapts well to working set sizes seen to date.

– Has very inefficient use of core.

Inefficient use of core is unsustainable as HDF5 file size and complexity

increases.
-9-

To maintain a reasonable hit rate, a large hash table

was necessary. But this resulted in inefficient use of

space.

This was not a problem for files with small amounts

of metadata. But HDF5 files have grown in size

and complexity to the point that this inefficiency is

no longer acceptable.

Thus I implemented a new, more space efficient

 metadata cache.

The Metadata Cache in HDF5 1.6.4 and 1.6.5

Metadata 9

Metadata 4

Metadata 5

Metadata 6

Metadata 2

Metadata 1

Metadata 7

Metadata 8

Metadata 3

Hash

Table

LRU

List

1

2

3

4

5

6

7

8

9

Note: This diagram omits many significant details.

Stores entries in hash

table as before.

Collisions handled by

chaining.

Maintains a LRU list

to select candidates for

eviction.

Maintains a running sum

of the sizes of the entries.

Entries are evicted when

a predefined limit on this

sum is reached.
-10-

The metadata cache introduced in 1.6.4 uses a hash

table that handles collisions by chaining. In essence,

each hash table location can store a list of entries.

Since entries are not fixed size, we keep a running

sum of the entry sizes, and evict when the maximum

cache size is exceeded.

While the cache was designed with multiple eviction

policies in mind, at present only Least Recently

Used (LRU) is supported.

The Metadata Cache in HDF5 1.6.4 and 1.6.5 (continued)

Will grow to size limit, as no entries are evicted until the limit is reached.

Will not grow significantly beyond this limit.

Size limit is hard coded – 4 MB in 1.6.4, and 8 MB in 1.6.5.

– Library must be recompiled to increase these limits.

– Sizes were chosen to be large enough for all known applications.

Uses space much more efficiently.

-- Good performance with 4 MB were the 1.6.3 cache used ~400 MB.

If working set sizes didn't vary wildly, this cache would be sufficient.

-- But there are 1 – 8 MB working set sizes in the wild today.

-- Larger variations are a matter of time.

Need adaptive cache resizing and API extensions for manual control of

metadata cache size.

-11-

Assuming that there is enough metadata, this cache

will grow to its size limit, as no entries are evicted

until the size limit is reached. With some caveats

discussed in the references, it will not grow

significantly beyond this limit.

The size limit is hard coded to the largest working

set size seen in the wild at the time of release.

But maximum working set sizes seen in the wild

keep increasing. We need to handle this, so we

decided to follow the dual strategy of providing both

manual and automatic cache resizing facilities.

The Metadata Cache in HDF5 1.8

Metadata cache in version 1.8 is essentially identical to that in version

1.6.4 & 1.6.5, with two additions:

1) New API calls for:

– manual control of maximum cache size, and

– monitoring of actual cache size and current hit rate.

2) Code supporting adaptive cache resizing, with supporting API calls for

 control and tuning.

Adaptive cache resizing is enabled by default.

– Initial (and minimum) maximum cache size is 1 MB

– Should be sufficient for the vast majority of users.

-12-

The metadata cache to be introduced in version 1.8

includes APIs and supporting code for both

automatic and manual cache resizing.

The adaptive cache resizing is enabled by default.

If I did a good job,the default configuration should

be sufficient for the vast majority of users.

Those with complex files may find it necessary to

either tune the adaptive cache resize code, or control

cache size manually from their applications.

Adaptive Metadata Cache Resizing in HDF5 1.8

Attempts to

– automatically detect the current working set size,

– set the maximum cache size equal to the working set size.

To the best of my knowledge, no-one has tackled this problem before.

– Some work with embedded processors is close.

– Sections of processor cache dynamically enabled/disabled to

 obtain the desired performance / power consumption trade off.

– Let me know if you are aware of anything closer.

The problem breaks down into two sub-problems:

1) Size increase problem. Must:

-- detect when the cache is too small, and

-- select a size increment (some overshoot is OK).

2) Size decrement problem. Must:

-- detect when the cache is too big, and

-- select a size decrement (must not overshoot).

-13-

The essence of the adaptive cache resize problem is

to determine the current working set size, and then

set the cache size accordingly.

If we undershoot, the hit rate will be poor. If we

overshoot, we may starve the user application for

core.

Adaptive Metadata Cache Resizing in HDF5 1.8 (continued)

Size increase problem is relatively easy – just monitor cache hit rate.

Every n cache accesses, check the hit rate.

If it is below a user defined threshold (i.e. 90%), increase the cache

size by some user defined increment (i.e. a factor of two or a constant).

Repeat until hit rate is above the threshold.

Works well in most cases.

Doesn't work well when hit rate varies slowly with increasing cache size.

– Only seems to happen when working set size is very large.

– Probably not an issue for several years.

-14-

Adaptive Metadata Cache Resizing in HDF5 1.8 (continued)

Size decrement problem is harder. Best solution so far:

Track how long since each entry in the cache has been accessed.

Every n cache accesses check the hit rate.

If it is above some threshold, evict all entries that have not been

accessed for more than some user specified number of cache accesses.

If this results in a cache size significantly below the maximum cache

size, reduce the maximum cache size accordingly.

In my synthetic tests, the combination of these two algorithms works well.

How well they work in the field remains to be seen.

-15-

Adaptive cache resize algorithms take time to react.

If the working set size varies too quickly, correct size is never reached.

This discussion has been greatly simplified.

See the references for detailed discussion. The User's Guide entry

should be particularly useful.

Adaptive Metadata Cache Resizing in HDF5 1.8 (continued)

-16-

The adaptive cache resize algorithms take time to

adapt. They can be tuned to adapt more quickly,

but I am afraid of overshoot, and thus have used a

conservative configuration for the default.

This implies that response will be logy if your

working set size changes quickly.

If you need to configure the adaptive resize code,

please read the references. I have omitted many

details in the interest of brevity.

HDF5 Metadata Cache Take Home Points

1) If your HDF5 files have relatively simple structure, you shouldn't notice

 the metadata cache changes.

2) If your HDF5 files are complex (i.e. huge groups, data sets with large

 numbers of chunks, or objects with large numbers of attributes), you:

– Should see a considerable reduction in HDF5 library memory

 requirements between 1.6.3 and 1.6.4.

– May see a performance drop between 1.6.5 and 1.8 caused by poor

 metadata cache hit rate while the adaptive cache resize code is

 adapting to your application. Solution – control cache size directly

 from your application.

3) If you work with complex HDF5 files and performance is an issue,

 please read the references. You will be happier.

-17-

Recapitulation of opening remarks.

Future Work

Future work on the metadata cache in HDF5 will be driven by where the

bottlenecks are, and where the funding is coming from. However, the

following items are on the to-do list:

1) Add code to collect metadata access sequences to facilitate tests of the

 adaptive cache resize algorithms against real world applications.

2) Algorithm development to repair some glitches that appear in extreme

 conditions with the current algorithms.

3) Determine if the adaptive cache resizing problem in HDF5 is really

 new. If it is, write a paper on it.

-18-

No promises, but I hope to include metadata access

sequence recording facilities in the 1.8 release.

Acknowledgment

This presentation is based upon work supported in part by a

Cooperative Agreement with the National Aeronautics and Space

Administration (NASA) under NASA grant NNG05GC60A.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of NASA.

Other support provided by NCSA and other sponsors and

agencies.

-19-

